Annex A

Clearance Height Calculations

Annex A

Clearance Height Calculations

TEAR WEB EXIENSION (Tx)

The following tables give information on the expected extension of the tear webbing (T_{x}) in the SP140 energy absorber for different falling distances and User body mass.

Free Fall Distance (m)	60	80	User Body Mass (kg)		
$0.0-0.5$	0.07	0.10	0.14	0.17	0.22
$\mathbf{0 . 5 - 1 . 0}$	0.15	0.21	0.27	0.35	0.43
$1.0-1.5$	0.22	0.31	0.41	0.52	0.65
$1.5-2.0$	0.30	0.42	0.55	0.70	0.86
$2.0-2.5$	0.37	0.52	0.69	0.87	1.08
$2.5-3.0$	0.45	0.63	0.82	1.05	1.30
$3.0-3.5$	0.52	0.73	0.96	1.22	1.51
$3.5-4.0$	0.59	0.83	1.10	1.40	1.73

NOTE: VALUES SHOUNREFLECT AN AVERAGE ARRESTNG FORCE OF 4.5 KN

ANCHOR TO D-RING (HDA)

The relative position of the harness D-ring connection to the anchor point is critical to performing accurate calculations of clearance. Selection of anchor points above the D-ring will have a beneficial effect on free fall distances, and are therefore a negative number (reducing free fall). Anchor points below the harness D-ring will have a detrimental effect, and are therefore positive (increasing free fall).
SpanSet strongly recommends using the worst possible scenario for the work at height activity to use as a basis for the calculation. It is also important to consider the usual working position of the work at height User i.e. kneeling down, stood on a platform etc

CONSTANT VALUES ($\mathrm{C}_{\mathrm{M}}, \mathrm{U}$)
For any calculation, SpanSet recommends the following constant values be used: Clearance Margin (C_{m}): 1.0m
User Body Length (U): 1.5m
THE CLEARANCE MARGINIS SPECIRED INENB55 AS 10 m AND SHOULD NEVER BE DECREASED FOR ANY CALCULATION THE USER BODY LENGTH VALUE OF 15 mIS THE RE ATIVE POSITION OF THED-RING TO THE GROUND WHEN TON. THE USER BODY LENGTH VALUE OF 1.5 mIS THE RE ATIVE POSTMON OF THE D-RING TO THE GROUND WHEN SARY, MAY BE INCREASED.

Annex A

Clearance Height Calculations

TYPICAL CALCULATION EXANPLES

EXAMPLE 1

A 100kg User has a 1.5 m lanyard connected to an anchor point 1 mBEL OW the harness D-ring
In this example the D-ring is above the anchor, so remains a positive value.
$L_{L}=+1.5 \mathrm{~m}$
$H_{D A}=+1.0 \mathrm{~m}$

Free Fall $=F_{F}=L_{L}+H_{D A}$

Free Fall $=1.5 \mathrm{~m}+1.0 \mathrm{~m}=2.5 \mathrm{~m}$

From Table 1, the tear out value of the energy absorber will be:
$\mathrm{T}_{\mathrm{x}}=0.69 \mathrm{~m}$

Required clearance below the anchor:
$C_{A}=\left(F_{F}-H_{A A}\right)+T_{X}+U+C_{M}$
$C_{A}=(2.5 m-(+1.0 m))+0.69 m+1.5 m+1.0 m=4.69 m$

EXAMPLE2

A 140kg User has a 2.Om lanyard connected to an anchor point 1 m ABOVE the harness D-ring
In this example the D-ring is below the anchor, and is therefore a negative value.
$L_{L}=+2.0 \mathrm{~m}$
$H_{b A}=-1.0 \mathrm{~m}$
Free Fall $=F_{F}=L_{L}+H_{b A}$
Free Fall $=\mathbf{2 . 0 m}+\mathbf{- 1 . 0 m}=1.0 \mathrm{~m}$

From Table 1, the tear out value of the energy absorber will be:
$\mathrm{T}_{\mathrm{x}}=\mathbf{0 . 4 3 m}$

Required clearance below the anchor:
$C_{A}=\left(F_{F}-H_{b A}\right)+T_{X}+U+C_{M}$
$C_{A}=(1.0 m-(-1.0 \mathrm{~m}))+0.43 \mathrm{~m}+1.5 \mathrm{~m}+1.0 \mathrm{~m}=4.93 \mathrm{~m}$

